
Online Appendix

A Government Expenditures
Figure A.1 shows that the imposition of the land tax enabled the early Meĳi government to finance
enormous investments in codification and technical absorption.
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Figure A.1: Japanese Government Expenditure

Note: Government expenditure and revenue data are from Toyo Keizai Shimposha (1926) Meĳi Taisho Zaisei
Shoran [Meĳi and Taisho Financial Details], Toyo Keizai Shimposha: Tokyo, pp. 2 and 640. Before adopting the
Gregorian calendar in 1873, Japanese fiscal years varied in duration and did not align perfectly with Western
ones, but the mapping to Western years is approximately correct. These are deflated by the Wholesale Price
Index from Ohsato, Katsuma (ed., 1966) Hundred-Year Statistics of the Japanese Economy, Statistics Dept., The
Bank of Japan: Tokyo, p. 76.

As a result of Japan’s impressive ability to raise government revenues, by 1884, Japanese
government revenues equaled 83.1 million yen. By contrast, the Chinese government in 1884, still
recovering from the chaos of the Opium Wars and Taiping Rebellion, could only raise 114 million
yen even though China had ten times Japan’s population.¹

¹Wong (2012) reports that Chinese tax revenue in 1884 was 77 million silver taels. We performed the
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B Mastery of IR Technologies Required for Developing
Newer Technologies: Historical Evidence From Japan

In Section 4.1, we argued that Japan needed to absorb IR technologies before it could master newer
technologies available at the technology frontier by 1880. Here, we present additional histori-
cal evidence for Japan, which suggests that industrial development around 1880 was not nearly
sufficiently mature for machine building and the other related sectors to emerge (Suzuki, 1999;
Masanori, 2022). For machine-building in particular, interchangeable parts were a complex tech-
nical feat requiring a high level of precision and quality from related sectors (e.g., castings, steel).
Until 1910 (when our sample period ends), Japanese industry did not possess these capabilities.
In fact, consistent with the literature on the big-push (e.g., Murphy et al. (1989)) and sectoral
linkages (Hirschman, 1958), it was necessary for Japan to master IR technologies before it could
become competitive in sectors such as machine-building that required high-quality inputs (such
as bolts, fittings, and standardized parts) and the knowledge acquired from mastering the first set
of technologies.

For example, technicians from the cotton spinning industry assisted in the development of
Toyoda’s power loom (a mechanized machine for weaving) in 1909 (Suzuki, 1999). The knowledge
acquired in mastering cotton spinning allowed the Japanese industry to move into machine build-
ing. Finally, we note that this discussion provides a micro-foundation for the technology adoption
lags literature (Comin and Hobĳn, 2010). Japan adopted interchangeable parts with a substantial
lag relative to the West (where interchangeable parts were an integral part of the American System
of Manufacturing that emerged in the early to mid-19th century), because the Japanese domestic
economy was missing complementary capabilities until after the turn of the 20th century.

C Productivity Growth
C.1 Estimating Productivity Growth
In this section, we demonstrate how to utilize trade data to construct a global database that enables
us to estimate productivity growth at the region-industry level. Here, we explain how we estimate
productivity growth for our set of regions. The basic intuition for this procedure is based on the
Ricardian model of trade. In the canonical two-country, two-good version of this model, knowing
the relative labor productivities of the cloth and wine industries in England and Portugal tells us
which country will export which product. The simple Ricardian model cannot be applied to data
because the prediction that a country cannot import a good it exports is patently false. Costinot
et al. (2012) solve this problem using the theoretical setup of the Eaton and Kortum (2002) model. In
their model, each industry (k) in exporter (i) is composed of a continuum of varieties (goods) each
produced based on a random productivity draw (z), whose mean rises with the “fundamental”
productivity in the industry, z′ik , where average industry productivity is a linear function of z′ik .
Thus, if a country has a high average productivity in some industry, it will tend to be the low-cost
supplier of more varieties in that industry and therefore export more. Since there is a monotonic
relationship between productivity and the value of exports, we can invert this relationship to obtain
an estimate of productivity by observing the level of exports. Costinot et al. (2012) show that the
relationship between exports from i to j in any period t (x i jkt) and fundamental productivity in an

currency conversion in two ways. The number in the text uses the exchange rate series from (Fouquin and
Hugot, 2016) of 1.39. We obtain a similar estimate if we convert silver taels into yen by noting that an 1867
Shanghai silver tael contained 36.0 grams of silver and an 1876 silver yen coin contained 24.3 grams of silver,
according to https://en.numista.com. This implies an exchange rate of 1.48 yen per tael.
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industry at time t (z′ikt) is linear in logs and can be written as

ln xi jkt 󳓬 γ
′
i jt + γ

′
jkt + θ ln z′ikt + 󰂃

′
i jkt , (A.1)

where γ′i jt is an importer-exporter fixed effect; γ′jkt is an importer-industry fixed effect; θ > 0 is
the Fréchet scale parameter; and 󰂃′i jkt is an error term that captures how trade costs deviate at
the industry-exporter-importer level from the exporter-importer average. The intuition for this
formula is that the amount trade between two countries will depend on bilateral factors captured
by γ′i jt (such as bilateral distance, the relative sizes of the exporter and importer, etc.), industry
demand conditions in the importer captured by γ′jkt , and relative productivity of the exporter in
the sector (xi jkt). We could estimate θ ln z′ikt by regressing log bilateral exports on an i jt, jkt, and
ikt fixed effects, but given the large number of zero trade flows, this would be biased.

Our path into solving this problem is to first note that our objective is to estimate not the level of
productivity, but the change: γikt ≡ θ∆ ln z′ikt . We estimate it by noting that we can first-difference
equation (A.1) and rewrite it in terms of fixed effects:

∆ ln xi jk 󳓬 γi j + γjk + γik + 󰂃i jk , (A.2)

where we have suppressed the time subscript and γℓ,m ≡ ∆γ′ℓ,m for any index (ℓ, m). Estimating
this equation enables us to identify γik and therefore θ∆ ln zik up to the choice of a normalization
that pins down the reference exporter productivity, importer demand, and industry productivity.²
This equation can be rewritten to yield

∆ ln xi jk 󳓬 γjk + γik + 󰂃̃i jk , (A.4)

where variables without primes correspond to the first differences of variables with primes and
󰂃̃i jk ≡ γi j + 󰂃i jk .

Estimation of equation (A.4) requires us to drop observations whenever the initial bilateral
export flow in a exporter-importer-industry tuple is zero, which is problematic because a large
amount of nineteenth-century export growth was due to exporters expanding their set of export
destinations over time. This can bias estimates of productivity growth based on a log-difference
specification downwards because it cannot account for growth due to the extensive margin. Amiti
and Weinstein (2018) [AW] propose an alternative estimation approach that corrects this problem.

Their estimator is closely related to weighted least squares. In particular, if there are no zeros
in the export data, the AW estimates will match those obtained using weighted least squares with
lagged export weights. A unique property of the AW estimates of γjk and γik is that they aggregate
to match the growth rate of total exports in every region-industry in which the industry’s aggregate
growth rate is well defined: i.e., the region initially has positive exports to at least one country
in the industry. Similarly, the estimates aggregate to match region-industry import levels as long
as a region has positive imports from at least one country in the industry in the initial period.
Thus, an export-weighted average of the γjk and γik will match total export growth in each country

²One can see this by noting that equation (A.2) can be rewritten as

∆ ln xi jk 󳓬 (γi j + γi + γj)+ (γjk + γk − γj)+ (γik − γi − γk)+ 󰂃i jk , (A.3)

where γi , γj , and γk are arbitrary normalization constants that define the baseline exporter productivity,
importer demand, and industry productivity.
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and industry.³ One can formally see that the AW estimator will have this property by writing
down the moment conditions used to obtain the estimates. In particular, the estimates will satisfy
two types of moment conditions. First, the estimates aggregate to match total exports in every
exporter-industry observation i:󳕐

j xi jk,t −
󳕐

j xi jk,t−1󳕐
j xi jk,t−1

󳓬 γik +
󳕗

j

xi jk,t−1󳕐
ℓ xiℓk,t−1

γ jk , (A.5)

where we have added a time subscript, t, to be clear about how time differences are constructed
from changes in levels. The left-hand side of the moment condition equals the growth rate of total
exports in sector k from exporter i, and the right-hand side is the sum of the exporter fixed effect
(γik) and a bilateral export weighted average of the importer fixed effects (γ jk). This condition,
therefore, ensures that an export-weighted average of the parameters aggregates to match total
exports. Second, the estimates will aggregate to match total imports in every importer-industry
observation j because they impose a second moment condition:󳕐

i xi jk,t −
󳕐

i xi jk,t−1󳕐
i xi jk,t−1

󳓬 γ jk +
󳕗

i

xi jk,t−1󳕐
ℓ xℓ jk,t−1

γik . (A.6)

Here, the left-hand side of this moment condition is the growth rate of total imports in sector k
by importer j, and the right-hand side is the sum of the importer fixed effect (γ jk) and a bilateral
export weighted average of the exporter fixed effects (γik). Since the estimates satisfy these two
moment conditions, the AW estimates aggregate to match the growth of exports and imports in
every region for each industry.

Once we obtain the estimates of γik and γjk , we run the following regressions to impose
normalizations that lead to a meaningful decomposition of global trade patterns:

γik 󳓬 γi + γ1k + γ̃ik , (A.7)

and
γjk 󳓬 γj + γ2k + γ̃jk , (A.8)

where γ̃ik and γ̃jk are regression residuals. This normalization choice has several useful proper-
ties. First, γi tells us the growth in exports resulting from shifts in exporter characteristics (e.g.,
productivity or size). Second, γ̃ik , the “comparative-advantage” component of export growth,
corresponds to the growth in exports due to shifts in productivity that are orthogonal to changes
in exporter factors (i.e., γi) and changes in industry factors (γ1k).󰑖 Since the former captures shifts
in productivity at the national level and the latter captures the impact of comparative advantage

³We also considered using the Poisson pseudo-maximum likelihood (PPML) estimator. However, one
well-known issue with PPML is that it often fails to converge in datasets with many zeros like ours (Santos
Silva and Tenreyro, 2010). While the AW estimator only required us to drop country-industry observations
where there were no exports to or imports from any country in the initial period, the PPML estimator did not
converge unless we used data for countries with at least two export destinations or two import sources in
each industry. As a result, while the AW procedure produced 1,358 productivity estimates based on 6,216
observations, the PPML estimator only converged on a subsample that was 36.5 percent as large. The PPML
estimator only produced 38 percent as many productivity growth estimates as the AW estimator.

󰑖Although we do not use the other normalization constants, we can recover them. γ̂k ≡ γ̂1k + γ̂2k is the
shift in exports that can be attributed to movements in industry k’s characteristics (e.g., global productivity
growth in k or global demand for k). Similarly, γi j can be recovered by regressing (xi jk,t/xi jk,t−1 −1− γ̂ik − γ̂jk)
on i j fixed effects.
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on export growth, γ̃ik . In the Costinot et al. (2012) model, γik ≡ θ∆ ln z′ikt , which enables us to
define define Γik ≡ γ̃ik/θ as the change in exporters i’s comparative advantage in industry k (i.e.,
the shift in productivity that cannot be explained by relative growth in industry k’s productivity
in all countries or relative productivity growth in the exporting country.󰑜

In the following sections, we estimate γi and Γik to understand patterns of productivity growth
worldwide. We implement this methodology on annualized trade growth rates for the sample
period (1880-1910), so our estimates correspond to averaged annual productivity growth rates.
We show how to construct annualized rates in appendix C.2. All results reported below refer to
annualized estimates.

C.2 Constructing Annual Growth Rates
We build the bilateral global trade data by merging bilateral industry export flows from different
source countries (Belgium, Japan, Italy, or the U.S.). These data source countries sometimes only
report exports in an industry in one of the early years (1880 or 1885) or one of the later years (1905
or 1910). Rather than throw out the industry for all countries when 1880 or 1910 is not reported
by one source region, we adopt a procedure to let us be flexible about the start and end dates by
computing the average annual export growth rates between any of two potential start years at the
beginning of our sample (1880 or 1885) and any of two potential end years at the end of our sample
(1905 or 1910).

We set the start year equal to 1880 if the source region reports data in that year or 1885 if data
is not available for 1880 but is available for 1885. Similarly, we set the final year equal to 1910 if
the source region reports data for that year or 1905 if data is not available for 1910 but is available
for 1905. Since this means that the start and final years for bilateral trade growth rates can vary
by data source region, we annualize the data so our export and productivity growth rates can be
interpreted as average annual growth rates.

We use two procedures to annualize the data. If the reporting region exports the product in
1880 or 1885 (i.e.,

󳕐
j xi jks > 0 for s 󳓬 1880 or 1885), we set s equal to the first year that satisfies󳕐

j xi jks > 0. We drop the sector if
󳕐

j xi jks 󳓬 0 because industry growth rates are undefined if a
country does not export anything in the industry in the first period. Similarly, we set f equal to
the last year ( f ∈ {1905, 1910}) that satisfies

󳕐
j xi jk f > 0. We compute the annual growth rate for

all bilateral exports satisfying xi jks > 0 as

gC
i jk ≡

󰀕
xi jk f

xi jks

󰀖 1
f−s

− 1

For this sample of exports, we define the implied level of exports in year s + 1 as xi jk,s+1 ≡󰀓
1+ gC

i jk

󰀔
xi jk,s .

We face a different problem if a country exports the product in year s, i.e.,
󳕐

j xi jks > 0, but no
bilateral exports are reported between two regions in the industry in the start year, i.e., xi jks 󳓬 0
for some {i, j, k, s}. To deal with this problem, we define the average growth rate in exports due to
new export destinations as

gN
ik ≡

󰀕
1+

󳕐
j∈Ni

xi jk f󳕐
j xi jks

󰀖 1
f−s

− 1, (A.9)

󰑜We follow Eaton and Kortum (2002) and set θ ≡ 8.28. The choice of θ does not qualitatively affect any
of our results; it just raises or lowers all countries’ productivity growth proportionally.
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where Ni is the set of new export destinations, which are defined to be the observations satisfying
xi jks 󳓬 0 and xi jk f > 0. In this case, we set the annualized level of exports to new destinations

in s + 1 as xi jk,s+1 ≡
󰀓
1+ gN

ik

󰀔−( f−s−1)
xi jk f . In other words, we set the counterfactual amount of

exports to new destinations in year s + 1 equal to the observed amount of exports in year f (xi jk f )
deflated by the growth rate in exports due to extensive margin growth between years s + 1 and f .
With these annualized values for exports in hand, we can write the left-hand side of equation A.5
as 󳕐

j xi jk f −
󳕐

j xi jks󳕐
j xi jks

󳓬

󳕐
j xi jk,s+1 −

󳕐
j xi jks󳕐

j xi jks
, (A.10)

and the left-hand side of equation A.6 as
󳕐

i xi jk f −
󳕐

i xi jks󳕐
i xi jks

󳓬

󳕐
i xi jk,s+1 −

󳕐
i xi jks󳕐

i xi jks
. (A.11)

We then can apply the AW estimation procedure in equations A.5 and A.6 to estimate the γik .

C.3 Productivity Growth Results
Section 3 examined Japan and other regions’ economic performance using the raw trade data. Here,
we utilize the methodology developed in the Section C.1 to provide the first systematic estimates
of productivity growth for many regions in the late nineteenth and early twentieth centuries.
Our normalization choice implies that productivity or anything that shifts exporter i’s exports
conditional on demand conditions will be captured by our estimate of γi . We can interpret γ̂i − L̂,
where L̂ is the annual population growth rate, as a measure of exporter productivity, i.e., how
much exports in country i grew after controlling for demand conditions and population growth.
Figure A.2 plots the annualized per capita shift in export supply net of population growth relative
to the value for the US, i.e., γ̂i − L̂i − (γ̂US − L̂US).󰑙 shows that the patterns are similar if we do not
account for differences in population growth.

Reassuringly, the ranking of economies broadly aligns with what economic history teaches us
about this period. France, Korea, Japan, Germany, Mexico, Italy, Austria-Hungary, Switzerland,
the United Kingdom, Canada, Belgium, and the US show robust growth in their export supply
shifter. In contrast, economies such as those of Portugal, Peru, Colombia, and Uruguay exhibit
weak performance. Notably, Japan’s export-supply shifter ranks third, confirming that its economy
experienced some of the highest export productivity growth globally during this period. Notice
that our estimates also suggest that Korea had high productivity growth (alongside Japan), which
may be related to the fact that Japan forcibly opened Korea in 1876, and although nominally
independent, the Japanese “reform[ed]” the Korean government and military administration by
introducing to the country the kinds of measures that Meĳi Japan itself had undertaken” (Iriye,
2007, p. 769)). Our result is consistent with the idea that the Meĳi reforms may have also raised
productivity in Korea.

Next, we examine the extent to which productivity growth was biased towards manufacturing.
We regress the comparative-advantage component of productivity growth, Γik , on broad industry
dummies:

Γik 󳓬 β
Agg
i × IAgg

k + β
Mfg
i × IMfg

k + βMin
i × IMin

k + 󰂃ik (A.12)

󰑙Appendix Figure A.3

Appendix p.6



Figure A.2: Relative Annualized Per Capita Exporter Supply Shifter by Exporter
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Note: Annualized per-capita exporter supply shifts are defined relative to the US, i.e., they are defined
as γ̂i − L̂i − (γ̂US − L̂US). Annual population growth is computed between {1870,1880} and 1913 using the
Maddison data (see Appendix H.5 for details).

where IAgg
k , IMfg

k , and IMin
k are dummies that are one if sector k is in agriculture, manufacturing,

or mining, respectively; and βAgg
i , βMfg

i , and βMin
i are parameters that measure the average growth

rate of comparative advantage for exporter i in agriculture, manufacturing, and mining. In words,
(βMfg

i − βMfg
US ) tells us how fast productivity in manufacturing grew in exporter i relative to the US

after controlling for its average growth and the average growth in world manufacturing. Figure A.4
reports the results from this exercise for countries in which the manufacturing share of exports in
1880 was not trivial. While Portugal and Hong Kong exhibit strong shifts in comparative advantage
towards manufacturing, the results in Figure A.2 indicate that these economies had low overall
rates of productivity growth, implying that their relatively strong performance in manufacturing
was offset by their low overall productivity growth. The next seven countries (Japan, Belgium,
Mexico, Italy, the UK, the US, and Canada) are all examples of regions that industrialized during
this period, exhibiting rapid productivity growth and exceptionally high relative productivity
growth in manufacturing.

Our structural estimates of industry productivity growth in this period confirm that Meĳi
Japan’s economic performance was exceptional. Average productivity growth was high in in-
ternational comparison and shifted strongly towards manufacturing. This result supports the
idea that Japan’s unparalleled shift towards specialization in manufacturing (Figure 2) was driven
by productivity growth biased towards manufacturing—that is, shifting Ricardian comparative
advantage.
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Figure A.3: Relative Annualized Exporter Supply Shift by Exporter
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Note: Annualized per-capita exporter supply shifts are expressed as relative to the US, i.e., they are defined
as γ̂i − γ̂US. See text for details on variable construction.

D External Validity: Codification and Economic Perfor-
mance in Other Periphery Economies Before WW1

In Section 7, we examined the influence of the Meĳi model for Korea and China in the postwar era.
Here, we are interested in further exploring the assertion that codification in the vernacular was
a necessary, but not sufficient, condition for development in the late 19th century, consistent with
other periphery economies’ experience at this time.

In Section 5, we showed econometric evidence that suggested that other periphery economies
did not experience similar patterns of development. Here, we complement this evidence with
historical evidence contrasting the experience of Japan with that of British India and Late Imperial
Russia. Both have been the subject of influential case studies in industrial development (e.g., Ger-
schenkron (1962); Clark (1987), and each built up a sizeable modern, factory-based manufacturing
sector by the eve of World War 1.󰑍

We begin with British India, where—despite an early start compared to other periphery
economies—Indian industry was quickly outcompeted by Japan in key sectors. By the 1930s,
India had become the largest market for Japanese cotton cloth, even under a protective import tar-
iff (Mass and Lazonick, 2013). Evidence shows that labor productivity and total factor productivity
in Indian factories were especially low (Gupta and Roy, 2017), suggesting persistent difficulties in
operating new technologies efficiently.

Turning to data on codification, Figure 5 shows that in 1910, there were virtually no technical

󰑍For example, Russia and British India had the largest installed capacity in mechanized cotton spinning
among periphery countries (U.S. House of Representatives, Tariff Board, 1912).
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Figure A.4: Relative Annualized Productivity Growth in Manufacturing
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Note: The plot presents our estimates of productivity growth in manufacturing relative to the US, i.e.,
(βMfg

i − βMfg
US ). βMfg

i is estimated in equation A.12 for regions in which the manufacturing sector’s export
share in 1880 is at least 0.5% and for regions in which we can estimate productivity growth in at least five
non-primary and five primary sectors.

books written in the major spoken languages: Hindi, Tamil, or Urdu. At first glance, British
India therefore seems to be consistent with our assertion that codification in the vernacular was a
necessary condition for development. While literate Japanese could read technical books in their
language, Indians literate in local languages had no access to such material.

However, as a British colony, English was the lingua franca for higher education and technical
instruction following the 1835 English Education Act. The real question, then, is whether Indians
could access knowledge in English. Indian census data offers significant insight into this issue. The
1891 Census of India states that 537,811 people could read English, which was only 0.19 percent of
the population (Government of India, 1893, p.224). Twenty years later, the 1911 Census reports that
just 0.54 percent of Indians were literate in English (Government of India, 1913, p. 299). However,
these figures likely overstate the actual number of Indians who could read English because they
include foreign English speakers (e.g., British expatriates) who mostly lacked the ability to explain
technical material in Hindi, Tamil, or Urdu. For example, the 1891 Census notes that only 386,032
Indians, or 0.14 percent of the population, could read English (Government of India, 1893, p.224),
roughly the same as the percentage of Americans today who can speak Japanese: 0.15 percent
(U.S. Census Bureau, 2022, p.3).

One can put the number of bilingual Indians into perspective by comparing it to the number of
Japanese who could read Western technical manuals translated into Japanese. Given that Japan’s
population in 1891 was 41 million, and assuming a literacy rate of 40 percent, we estimate that
approximately 16 million Japanese could read technical manuals. These numbers suggest that
there were more than 40 Japanese people who could read technical manuals in Japanese for every
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Indian person who could read them in English.
Of course, having forty times more people able to read engineering in Japan than in India might

not have mattered if English speakers could easily share their knowledge across the language
barrier in India. Although we lack concrete data on how difficult this was, Western and Indian
historical accounts suggest that it was challenging for English speakers to communicate with
those who could not understand them. Indeed, they argue that differences in training and literacy
significantly contributed to the productivity gap between the Japanese and Indian textile industries.
For example, Pearse (1930) study of the development of the Asian cotton textile industries notes
that

“Each [Japanese] firm has at least one engineer with university education and special
textile engineering training. Some of the mill managers have passed through similar
educational institutions, but all have at least graduated from one of the technical
schools One notices everywhere the result of a good general education; the inside
managers and foremen have had a sound training in technical schools, they have not
grown up empirically in the mill; every mill girl reads and writes, and possesses
general education quite on par with that of European countries. The foreman and
general supervisors are specially trained in classes run by the combines. We are not
dealing with labor as it exists in India, China, or South America” quoted in (Otsuka
et al., 1988, pp. 84-85).

Similarly, Mehta (1954)’s 100-year history of the cotton textile industry in India emphasizes the
communication and staffing challenges that arose from trying to use technology whose descriptions
were written in English.

“The difficulties of language [faced by English engineers] were unusually great, not
only in relation to the workers but frequently also in relation to the employers and other
members of the latter’s office. The growth of other professions, namely, law, medicine
and government service, generally precluded from the industry the extremely small
number of Indians who had access to schools where English was taught. An exceed-
ingly small number of Indians received their training in English technical institutes
and factories. The capacity of the managing agents to ensure a high level of production
on the basis of an informed judgment was extremely low in the first fifty years (i.e.,
from 1854 onwards). For one, the top technicians were Englishmen on whom direct
control was extremely limited. Secondly, the managing agent was himself a novice in
many cases in the art of management, not only of machines but also of men, and he
was hardly fitted to achieve a proper control of production functions. (Mehta, 1954,
pp. 101-108)

In light of the evidence above, the failure of British India to develop an internationally compet-
itive industry aligns well with our narrative. With neither access to codified knowledge in spoken
languages such as Hindi, Urdu, or Tamil, nor widespread literacy in English, Indians did not have
access to codified technical knowledge.

Imperial Russia is another context which has been the subject of influential studies on late in-
dustrialization. Figure 5 shows the limited availability of technical books in Russian in 1910. Our
theory would thus predict that Russia would struggle to develop an internationally competitive,
modern industrial economy. Unfortunately, given the present state of knowledge, there is sub-
stantial debate in the literature about exactly how successful Russia’s industrialization was during
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this period (see e.g., Zhuravskaya et al. (2024) for a recent overview). This makes it essentially
impossible to draw definitive conclusions about whether Imperial Russia industrialized without
access to a level of codified knowledge comparable to Japan’s.

However, if one examines the comparative performance of a flagship industry such as mech-
anized cotton spinning, there are important differences between the two countries. In particular,
while both Japan and Russia had a sizeable domestic cotton textiles industry, a key difference was
that Russia’s industry developed behind a high tariff wall and predominantly served the domestic
market (Gregg, 2020).󰑑 In fact, Gregg (2020, p. 162) characterizes the Russian cotton industry as
having achieved “a worldwide intermediate case of industrial development.” Consistent with the
narrative of modest progress in the industry, Clark (1987) argues that Russian textile workers who
migrated to New England were 54 percent as productive as English textile workers. Contrast this
with Japan, where cotton textiles became an important exported commodity during our sample
period. That is, while Japanese cotton textile producers were sufficiently productive to compete in
international export markets, there is no evidence that this was the case for Russian producers on
the eve of World War I.

In summary, the qualitative evidence for British India paints a consistent picture with the
econometric evidence presented in the main text. The lack of codified knowledge in major spoken
languages, combined with a low proportion of English speakers among the native population,
kept knowledge access costs high in British India relative to Japan. This may be an important
reason why, despite a generous head start, Japan rapidly outperformed British India in modern
industries. We know much less about both codification and development in Imperial Russia.
While future scholarship on Russian industrial performance before World War 1 may lead us to
revise our conclusions, given the current state of knowledge, the evidence suggests that Russia is
also consistent with a country in which high technology access costs precluded the emergence of
an internationally competitive industrial sector.

󰑑Japan was prohibited from enacting protective tariffs during this period due to the unequal treaties it
was forced to sign.
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E Additional Tables

Table A.1: Linguistic Distance from English and GDP

Log GDP per Capita
(1) (2) (3) (4) (5) (6)

1870 1913 2018 1870 1913 2018
Log Physical Distance between Country and the UK -0.170∗∗∗ -0.207∗∗∗ -0.237∗∗∗ -0.248∗∗∗ -0.315∗∗∗ -0.323∗∗∗

(0.058) (0.064) (0.066) (0.054) (0.065) (0.072)

Number of Weeks Required to Learn the Plurality Language -0.010∗∗∗ -0.013∗∗∗ -0.008∗ -0.005∗∗ -0.007∗∗∗ -0.003
(0.002) (0.003) (0.004) (0.002) (0.003) (0.005)

Observations 61 61 61 55 55 55
R2 0.395 0.428 0.208 0.369 0.426 0.198
Includes English-speaking Countries 󰃀 󰃀 󰃀
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: GDP per capita is from the Maddison Project. The physical distance between the region and the UK
is from CEPII database using the great circle formula. The number of weeks an English-speaking native
will take to attain “Professional Working Proficiency” in the country’s plurality language is estimated by
the U.S. Department of State’s Foreign Service Institute. See Appendix H for data construction and sources.
Robust standard errors are in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table A.2: Manuals with the Most Copies Held by the Imperial College of Engineering
Library

Category Author Title Copies

Mathematics Wilson Elementary Geometry 340
Todhunter Trigonometry for Beginners 234
Wilson Algebra for Beginners 192

Civil Engineering Unwin Elements of Machine Design 71
Rankine Applied Mechanics 55
Rankine Manual of Civil Engineering 55
Perry Treatise on Steam 48
Goodeve Elements of Mechanism 34

Mining and Mineralogy Egleston Hydraulic Mining in California 62
Milne Notes on the Ventilation of Mines 47
Lyman Reports of Progress for the First Year

of the Oil Surveys
30

Source: Reproduced from Meade (2022), Table 1, p. 12.
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Table A.3: Summary Statistics

Variable N Mean SD p25 p50 p75
Change in exporter’s i comparative advantage in industry k (Γik) 1246 0.00 0.04 -0.01 0.00 0.02
Change in Japan’s comparative advantage in industry k (ΓJapan,k) 56 0.00 0.05 -0.01 0.01 0.02
Exporter’s Industry Growth Rate 1397 -0.10 0.38 -0.05 0.03 0.09
Exporter’s Industry Growth Rate in Japan 71 -0.05 0.37 -0.02 0.04 0.15
Britsh Patent Relevance 125 0.05 0.09 0.02 0.04 0.06

Note: The estimation of Γik is detailed in Appendix Section C. Exporter’s Industry Growth Rate is the
annualized export growth rate for each industry between {1880, 1885} and {1905, 1910}. The details on the
construction of British Patent Relevance are in Appendix Section I.

Table A.4: Japanese Export Growth and British Patent Relevance 1875-1910

Annualized Export Growth Between 1875 and
(1) (2) (3) (4) (5) (6) (7)

1880 1885 1890 1895 1900 1905 1910
British Patent Relevance -0.104∗∗ -0.027 0.011 0.028∗∗ 0.022∗∗∗ 0.020∗∗∗ 0.014∗∗

(0.049) (0.020) (0.017) (0.011) (0.008) (0.007) (0.006)
Observations 40 45 46 47 45 46 47
Constant 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀

Note: The dependent variable is annualized Japanese export growth for the year reported relative to 1875.
The number of observations changes across specifications because of the different number of traded sectors
in different years. Robust standard errors in parentheses: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A.5: Annualized Export Growth and British Patent Relevance - British Colonies and
Steam Intensity

Export Growth
(1) (2)

BPR × Japan 0.121∗∗∗ 0.123∗∗
(0.033) (0.052)

BPR × Not Japan -0.036∗∗∗ -0.003
(0.010) (0.011)

BPR × British Colony 0.029
(0.020)

Steam Intensity -0.744∗∗
(0.297)

Observations 1395 690
R2 0.234 0.309
Country fixed effects 󰃀 󰃀
Sample All All

Note: The dependent variable, “Export Growth,” is the annualized export growth rate for industry k in
region i between {1880,1885} and {1905,1910}. BPR stands for “British Patent Relevance”, it captures how
relevant British patents are to the vocabulary used in manuals of an industry k. BPR is standardized to have
a mean of 0 and a standard deviation of 1. The Japan dummy equals one if the region is Japan and zero
otherwise, “Not Japan” is analogously defined. “British Colony” is a dummy for whether a region was a
British colony in the 1880-1910 window. Steam Intensity is constructed as Steam Engine Horsepower/Wage
Bill by industry using French manufacturing census data from the 1860s (see Appendix H.6 for details about
the data construction). Robust standard errors are in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A.6: Annualized Export Growth and British Patent Relevance - Manufacturing
Sectors

Export Growth
(1) (2) (3) (4) (5) (6) (7)

BPR × Japan 0.124∗∗ 0.124∗∗ 0.124∗∗ 0.124∗∗ 0.124∗∗ 0.124∗∗ 0.124∗∗
(0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055)

BPR × Not Japan -0.014 -0.015 -0.023 -0.041∗
(0.012) (0.013) (0.014) (0.022)

BPR × English-Speaking 0.001
(0.025)

BPR × French-Speaking 0.038
(0.023)

BPR × Top-4 Codified 0.050∗∗
(0.024)

BPR×High-Income -0.347 -0.347
(0.335) (0.335)

BPR×Medium-Income -0.041 0.079
(0.885) (0.911)

BPR× Low-Income -0.856 -0.318
(0.760) (0.967)

BPR×Asia -1.180
(1.153)

Observations 31 661 661 661 661 661 661
R2 0.133 0.362 0.362 0.364 0.366 0.363 0.364
Country fixed effects 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀
Sample Japan All All All All All All

Note: The dependent variable, “Export Growth,” is the annualized export growth rate for industry k in
region i between {1880,1885} and {1905,1910}. BPR stands for “British Patent Relevance”, it captures how
relevant British patents are to the vocabulary used in manuals of an industry k. BPR is standardized to have a
mean of 0 and a standard deviation of 1. Japan dummy equals one if the region is Japan and zero otherwise,
“Not Japan” is analogously defined. “English-speaking” is an indicator equal to 1 if the region’s plurality
language is English. “Top-4 Codified” is a dummy for countries that speak one of the four most codified
languages: French, English, German, and Italian. {High, Medium, Low}Income are indicator variables
which use 1870 GDP per capita from the Maddison Project to identify if a region is in the top third of the
income distribution (high), middle third (medium), or in the bottom third (bottom); we set these dummies
to 0 for Japan. Asia dummy equals 1 if the region is in Asia and 0 if it is Japan or not in Asia. Robust
standard errors are in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A.7: Annualized Export Growth and British Patent Relevance: Dropping Regions

Export Growth, Dropping Exports to
(1) (2) (3) (4) (5) (6) (7)

English-Speaking British Colonies Languages Similar to English High-Income Medium-Income Low-Income Asian
British Patent Relevance 0.112∗∗∗ 0.112∗∗∗ 0.112∗∗∗ 0.089∗∗∗ 0.111∗∗∗ 0.108∗∗∗ 0.108∗∗∗

(0.031) (0.031) (0.032) (0.031) (0.032) (0.036) (0.036)
Observations 71 71 71 70 67 61 61
R2 0.107 0.107 0.108 0.065 0.107 0.076 0.076
Constant 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀
Sample Japan Japan Japan Japan Japan Japan Japan

Note: The dependent variable, “Export Growth,” is the annualized export growth rate for industry k
between {1880,1885} and {1905,1910}. BPR stands for “British Patent Relevance”, it captures how relevant
British patents are to the vocabulary used in manuals of an industry k. BPR is standardized to have a mean
of 0 and a standard deviation of 1. Each column drops exports to a different subset of countries/regions. (1)
Drops English-Speaking countries. (2) Drops British Colonies. (3) Drops countries with a language similar
to English, defined as those where it takes six or fewer months for an English speaker to become proficient.
(4), (5), and (6) drop High, Medium, and Low-income countries, respectively. (7) Drops exports to Asian
countries. Robust standard errors are in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table A.8: Annualized Export Growth and British Patent Relevance: Dropping Sectors

Export Growth, Dropping
(1) (2) (3)

Cotton-Textiles All Textiles Iron and Fabricated Metals
British Patent Relevance 0.121∗∗∗ 0.111∗∗ 0.123∗∗∗

(0.036) (0.045) (0.034)
Observations 69 63 69
R2 0.112 0.086 0.111
Constant 󰃀 󰃀 󰃀
Sample Japan Japan Japan

Note: The dependent variable, “Export Growth,” is the annualized export growth rate for industry k
between {1880,1885} and {1905,1910}. BPR stands for “British Patent Relevance”, it captures how relevant
British patents are to the vocabulary used in manuals of an industry k. BPR is standardized to have a mean of
0 and a standard deviation of 1. Each column drops exports to a particular industry or group of industries.
(1) drops cotton textile-related industries. (2) drops all industries related to textiles. (3) drops industries
related to producing iron. Robust standard errors are in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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F Additional Figures

Figure A.5: Linguistic Distance Partial Regression Plot for 1870
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Note: This figure plots the relationship between log GDP per capita in 1870 and linguistic distance after
controlling for log physical distance. Data are from the Maddison dataset, the U.S. Department of State’s
Foreign Service Institute, and CEPII, respectively.

Figure A.6: Linguistic Distance Partial Regression Plot for 1913
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Note: This figure plots the relationship between log GDP per capita in 1913 and linguistic distance after
controlling for log physical distance. Data are from the Maddison dataset, the U.S. Department of State’s
Foreign Service Institute, and CEPII, respectively.
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Figure A.7: Annualized Export Growth and British Patent Relevance for Japan
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Note: The dependent variable, “Export Growth,” is the annualized export growth rate for industry k
between {1880,1885} and {1905,1910}. BPR stands for “British Patent Relevance”, it captures how relevant
British patents are to the vocabulary used in manuals of an industry k. BPR is standardized to have a mean
of 0 and a standard deviation of 1. See text for details on variable construction.
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Figure A.8: Annualized Prod. Growth Γ and British Patent Relevance for Japan
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Note: The dependent variable, Γik , is the annualized growth rate in comparative advantage for industry k
in region i between {1880,1885} and {1905,1910}. BPR stands for “British Patent Relevance”, it captures how
relevant British patents are to the vocabulary used in manuals of an industry k. BPR is standardized to have
a mean of 0 and a standard deviation of 1. See text for details on variable construction.

G Bilateral Trade Dataset
Our master bilateral, product-level trade dataset is constructed from four main sources:

1. Belgian manufacturing exports and imports in 1880, 1885, 1905, and 1910. We obtain the
Belgian bilateral manufacturing product-level trade data from Huberman et al. (2017). They
use the Tableau générale du commerce extérieur published by the Belgian government as their
primary source and concord product lines to SITC Revision 2 codes. The authors record
trade in manufacturing at five-year intervals between 1870 and 1910. In 1900, 50% of Belgian
exports and 20% of imports were in manufacturing.

2. Italian exports to and imports from top trading partners in 1880, 1885, 1905, and 1910. We
obtain Italian trade data from Federico et al. (2011). This dataset harmonizes historical trade
records from Italian customs between 1862 and 1950 by reconciling the different product lines
to SITC Revision 2 codes. The source reports bilateral trade at the product level between
Italy and its ten biggest trading partners.

3. American exports and imports in 1880, 1885, 1905, and 1910. The U.S. data are digitized
from yearly volumes of Foreign Commerce and Navigation, Immigration, and Tonnage of the United
States published by the Treasury Department’s Bureau of Statistics (1900). We digitized and
concorded these data to SITC Revision 2 codes.
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Figure A.9: Cosine Similarities between 1780-1852 and 1853-1879

Note: This plot compares cosine similarities constructed using British Patents from 1780-1852 (y-axis) against
cosine similarities using British Patents from 1853-1879 (x-axis).

4. Japanese exports and imports in 1875, 1880, 1885, 1905, and 1910. We obtained bilateral
product-level Japanese export data at five-year intervals between 1880 and 1910 from Meiss-
ner and Tang (2018). We digitized and concorded the Japanese export data for 1875. The
Japanese trade data were sourced from the yearly volumes of Annual Return of the Foreign Trade
of the Empire of Japan, published by the Department of Finance (1916). From these volumes,
we use only the tables from the “Quantity and Value of Commodities Imported/Exported
from Various Countries" sections.

Japan and the U.S. kept detailed records of their trade with foreign countries between 1880 and
1910. We used the Meissner and Tang (2018) product-SITC mapping wherever possible for Japan
and the U.S. to ensure consistency. Each entry provides the name of the product, its quantity, units,
transaction value, and year, as well as the names of the exporting and importing countries. The
construction of these data involves digitizing the records and harmonizing products and country
names. To construct a harmonized dataset across different reporting countries, we convert all data
to a common currency, harmonize country names, and address issues of double reporting. The
protocols we adopted are described in detail in the subsections below.

G.1 Harmonization of Countries
Country names are not standardized across reporters (Belgium, Italy, Japan, and the U.S.) and
years. In order to make comparisons across years and countries, we standardized country names
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Figure A.10: Sectors with Highest Positive and Negative Changes in Cosine Similarities

Note: This plot compares sectors with the highest positive and negative changes in cosine similarities based
on the 1780-1852 sample and the 1853-1879 sample. A positive change means that the cosine similarity was
higher in the 1853-1879 sample than in the 1780-1852 sample.

as follows:

1. We made a list of all the country names that appear in all of the trade books from the four
reporters.

2. We grouped names that refer to the same country: e.g., Vietnam and French Indo-China
both refer to the same political entity at the time.

3. We kept the group if it is used by at least three reporters in the 1880 or 1885 books and the
1905 or 1910 books for each reporter.

4. If the country group did not meet the previous requirement, then we built a regional group
that did. For example, Honduras, Nicaragua, and Costa Rica do not have three reporters in
all the required years. If we group all Central American States together, this larger regional
group meets our requirements.

5. If a country could not be grouped and did not meet the reporter-year requirement, then we
dropped it.

6. If a region was too disaggregated, we dropped it. For example, Singapore and Hong Kong
are distinct entities, each with substantial trade volumes in our dataset. If one country, in
one year, reported “Hong Kong & Singapore," we dropped this observation.

Appendix Figure A.11 illustrates how we grouped countries. We use the map of the world on the
eve of World War I (1914) as a baseline for our country groups.
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Figure A.11: Country Groups

Note: Colonies are grouped by imperial power and region (e.g., British Africa, French East Indies). All
small, remote islands (e.g., Falklands) were dropped. Countries in white are missing from the dataset, and
countries in gray were not modified. The remainder of the footnote reads from West to East on the map. The
West Indies are grouped together, with the exception of Cuba and Puerto Rico. British Honduras (although
technically in Central America) is considered part of the West Indies due to its political affiliation with other
British colonies in the Caribbean. The Ottoman Empire includes Libya, but not Algeria (which fell to the
French in 1881). Taiwan is never directly mentioned in any trade statistics and is not included in Japanese
trade for the time period. Since each book either mentions French India or French Indochina, we conclude
that French India refers to French Indochina, not to the French port cities in India. Thailand (then Siam) is
grouped with other minor East Indies colonies such as Timor-Leste and British Borneo.

G.2 Double Reporting
Trade between reporting countries appears twice: once as exporters from the origin and secondly
as imports by the destination. For all reporting countries except Belgium, we use their export data
for their exports to reporting and non-reporting regions. Because Belgium did not report any trade
data for non-manufacturing sectors, we use the reporting country’s import data from Belgium to
fill in these gaps. We use imports by reporting countries from non-reporting countries to construct
the exports of non-reporting countries.
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H Other Variables from External Sources
This section documents the variables we obtained from secondary sources and any changes we
made to them. We discuss data from primary sources in the next sections.

H.1 Defining current high-income countries
We make a reference to “high-income” countries in the Introduction. We define a country as high
income if its GDP per-capita (PPP adjusted) in 2022 is 50% or more of the US GDP per-capita,
based on data from the World Bank (2024). Specifically, we use the variable “GDP per capita, PPP
(current international dollars).”

H.2 Identifying the plurality language by country: Ethnologue (2023)

Reference Ethnologue, https://www.ethnologue.com/.

We identify the plurality language spoken by each country for the analysis examining the rela-
tionship between per capita-income and linguistic distance in Appendix Table A.1 and Appendix
Figures A.5 - A.6. To do so, we obtain the modern (2023) plurality language spoken in each country
from “Ethnologue”.

H.3 Weeks to Learn a Language: Foreign Service Institute (2023)

Reference “Foreign Language Training - United States Department of State," U.S. Department of
State, 03-May-2023. [Online]. Available: https://www.state.gov/foreign-language-traning/.

The Foreign Service Institute of the U.S. Department of State estimates the number of weeks
required for an English native speaker to reach “General Professional Proficiency" in the language
(a score of “Speaking-3/Reading-3" on the Interagency Language Roundtable Scale. We use this
measure to proxy linguistic distance for the analysis examining the relationship between per
capita-income and linguistic distance in Appendix Table A.1 and Appendix Figures A.5 - A.6.

H.4 Distance to U.K.: GeoDist Database (Mayer and Zignago, 2011)
We control for physical distance in the analysis examining the relationship between per capita-
income and linguistic distance in Appendix Table A.1 and Appendix Figures A.5 - A.6. To do so,
we use data from Centre d’Etudes Prospectives et d’Informations Internationales (CEPII) which report
different measures of bilateral trade distances (in kilometers) for 225 countries. Our measure of
the distance between any two countries is the “dist” variable, which is calculated using the great
circle formula. They compute internal distances by using the latitudes and longitudes of the
most important cities/agglomerations (in terms of population). This means that the distance of
a country to itself will never be zero; rather, the distance measure captures how far away major
population centers within a country are from each other.
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H.5 Historical income and population data: Maddison Project
Database

The Maddison Project Database provides information on comparative economic growth and in-
come levels over the very long run. We use the 2020 version of this database (Maddison Project
Database, 2020), which covers 169 countries up until 2018. We use data on GDP per capita from
this source for the analysis examining the relationship between per capita-income and linguistic
distance in Appendix Table A.1 and Appendix Figures A.5 - A.6. Further, we also use this source
to assign regions into income groups in the main analysis (Section 5).

Classifying regions as high-, medium- and low-income
We classify regions in our dataset by income level using the GDP per capita data from Maddison
for 1870. To obtain this variable, we adopt the following steps:

1. The Maddison data uses modern country borders. We first map modern countries to the
historic states they were part of in 1880-1914, which will match our trade data (e.g., Hungary
and Austria map to Austria-Hungary).

2. The GDP per capita of a historical state that spans two or more modern countries is the
simple mean of the GDP per capita of its constituent modern countries.

3. We rank regions by GDP per capita in descending order. Countries in the top third of this
distribution are considered high income, countries in the middle third, middle income, and
countries in the bottom third, low income.

Finally, we also use the Maddison data to estimate annualized population growth needed for
constructing Figure A.2.

Estimating annualized population growth
We use the 1870 and 1913 population data to estimate a region’s population growth according to
the following protocol:

1. Concord the modern countries in the Maddison database with the historic regions we use
in this paper.

2. The population of a historic region for a given year is the sum of the population of the
modern states that make it up.

3. Compute annualized population growth

Annualized Population Growthi 󳓬

󰀕Populationi,1913

Populationi,1870

󰀖 1
1913−1870

− 1

The Maddison Project does not report data for the Russian Empire during this time period; we
complement the database by using the Russian population estimates for 1880 and 1910 from
Mitchell (1975).
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H.6 Steam Intensity Usage: Chanut (2000)
In Table A.5, we control for the intensity of steam usage of industries in our regressions. We
measure this variable based on 19th-century French energy data that comes from Chanut (2000).
We manually map French industries to SITC codes. We define the steam intensity of an industry
as the ratio between the steam engine horsepower of the industry over its Wage Bill, where the
wage bill is defined as:

Wage Bill 󳓬 # of Male Workers×Avg. Male Hourly Wage +

# of Female Workers×Avg. Female Hourly Wage +

# of Child Workers×Avg. Child Hourly Wage

H.7 Historical Exchange Rates: Fouquin and Hugot (2016)
Our bilateral-product level trade data converts the value of exports and imports (reported in local
currency) into current yen. We use data on annual exchange rates from the Historical Bilateral Trade
and Gravity Dataset (TRADHIST) from which we obtain the yearly exchange rates for the 1870-1915.
Specifically, they provide us the value of one unit of the local currency in pounds.
We calculate the exchange rate from Yen to Belgian francs, Italian lira and US dollars as follows:

£t/Xt

£t/¥t
󳓬

¥t

Xt

where t refers to year and X to the local currency. The value that we obtain is the value of one unit
of the local currency in yen.

I Constructing the British Patent Relevance measure
I.1 Overview
In our empirical analysis, we develop a method to quantify the supply of codified knowledge
generated by the IR for each industry. We use a textual approach that follows how codified technical
knowledge was disseminated in this period: through the publication of technical manuals. For
each industry, we measure the textual similarity from historical technical manuals (in English)
and patents. We call this measure British Patent Relevance (BPR). We also construct an analogous
measure using U.S. patents, which we call U.S. Patent Relevance (USPR) measure. To implement
this, we assign at least one technical manual describing production techniques to each SITC
industry code and compute the similarity of its text to either British or U.S. patent texts.

We construct unigrams (e.g., steam) and bigrams (e.g., steam engine) from both patent text and
technical manuals. These terms are stemmed (e.g., steam engine → steam engin) and aggregated into
an industry-level corpus, with one corpus for each industry k. Patent text forms a separate corpus.
For each corpus, we compute a TF-IDF (Term Frequency-Inverse Document Frequency) vector that
characterizes its vocabulary. Patent relevance for industry k is then defined as the cosine similarity
between the TF-IDF vector of industry k’s technical manuals and that of the patent corpus. We
describe each step in detail below.

Appendix p.25



I.2 Building the Terms
We construct terms from the raw text by generating n-grams. The procedure is as follows:

1. Split the raw text into sentences.

2. Convert all words to lowercase, stem them, and standardize spelling (UK spelling → US
spelling).

3. Represent each sentence as an ordered list of words.

4. Generate n-grams from each sentence word list.

5. Count the frequency of each n-gram within a sentence and aggregate across sentences.

6. Remove n-grams that contain at least one stop word (e.g., “a,” “the”).

7. Produce a dataset containing all n-grams in the document and their corpus-level frequencies.

Example

1. Text "A stemmer for English operating on the stem cat should identify such strings as
cats, catlike, and catty."

2. Sentence "A stemmer for English operating on the stem cat should identify such strings
as cats" "catlike" "and catty"

3. Processed Word List "a stemmer for english oper on the stem cat should identifi such
string as cat" "catlik" "catti"

4. Unigrams "a" "stemmer" "for" "english" "oper" "on" "the" "stem" "cat" "should" "identifi"
"such" "string" "as" "cat" "catlik" "catti"

5. Unigrams without Stopwords "stemmer" "english" "oper" "stem" "cat" "should" "identifi"
"string" "cat" "catlik" "catti"

6. Final Unigrams with Count "stemmer" 1 "english" 1 "oper" 1 "stem" 1 "cat" 2 "should" 1
"identifi" 1 "string" 1 "catlik" 1 "catti" 1

I.3 Focusing on Jargon
Many unigrams and bigrams are not technical jargon. In order to focus our analysis on jargon, we
drop unigrams and bigrams that are commonly used. We use the Bible to identify commonplace
non-technical words that are necessary to write a coherent text but are not helpful in defining an
industry’s technical vocabulary. We use the 1885 King James Bible because it uses the common,
non-technical nineteenth-century words and phrases. We define Biblical words as the 1,000 words
occurring with the highest frequency in the Bible. However, if one of these words is used in the
description of an SITC keyword, we do not count it as a Biblical word. For example, the stemmed
word “brea” is a top 1,000 word in the Bible, but it also happens to be a keyword in the SITC
description for cereal products.
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I.4 Formally Defining TF-IDF
The term frequency (TF) measure is the count of instances a term appears in a corpus, divided by
the number of terms in the corpus. The formula for the TF of term τ in corpus c is:

TF(τ, c) ≡ Fτ,c󳕐
τ′∈c Fτ′,c

(A.13)

where Fτ,c is the raw count of term τ in corpus c; and
󳕐
τ′∈c Fτ′,c is number of terms in the corpus.

The inverse document frequency (IDF) is a measure of how common or rare a word is across all
documents. The rarer the word, the higher the IDF score. We define the IDF for term τ in all
corpora C (i.e., the complete collection of the corpus) as:

IDF(τ, C) 󳓬 log
󰀕

N
Nτ + 1

󰀖
(A.14)

where N is the total number of documents (books and patent󰑣) in C; Nτ is the number of books in
the corpora where the term τ appears.

The TF-IDF is then
TF-IDF(τ, c, C) 󳓬 TF(τ, c) · IDF(τ, C) (A.15)

We remove any n-grams that include words in the description of the SITC categories from the
sample before estimating the cosine similarities. For example, removing the unigram “cotton”
ensures that books describing how to grow cotton are not coded as part of the technology to spin
cotton yarn.

Comparing the Vocabulary of Industries and Patents
We define the Patent Relevance of industry k as the similarity between the TF–IDF vector of its
technical manuals and the TF–IDF vector of patent texts. The intuition is that if industry manuals
use vocabulary similar to that found in patents, then patents contain knowledge relevant to that
industry. We measure similarity using cosine similarity, the standard NLP metric for comparing
text representations.

Cosine similarity corresponds to the cosine of the angle between two vectors. In the case of
our baseline results, it compares the vector of word frequencies in the Bennett Woodcroft patent
collection (British patents), BW , with the vector of word frequencies in the technical manuals for
industry i, T Mi. Formally,

BPRi ≡
BW · T Mi

󰀂BW 󰀂󰀂T Mi󰀂
󳓬

󳕐n
j󳓬1 BW jTMi j󰁴󳕐n

j󳓬1 BW2
j

󰁴󳕐n
j󳓬1 TM2

i j

, (A.16)

where BPRi denotes the British Patent Relevance of industry i. By construction, BPRi lies between
0 and 1. A value of 1 indicates that industry manuals and patents use exactly the same vocabulary
in the same proportions, while a value of 0 indicates no overlap in vocabulary.

I.5 Data Sources

Industry For each industry k (defined by SITC-3 Revision 2 codes), we hand-curated a list of
nineteenth-century books describing the production process of the goods produced by k from

󰑣The whole set of patents counts as one document.
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HathiTrust. We picked the technical books that best matched the knowledge an entrepreneur would
have had access to if they had studied Western knowledge before Japan began to industrialize, i.e.,
before the 1880s.

British Patents (1617-1852): The patent text from British patents between 1617-1852 comes
from the second edition of “Subject-Matter Index of Patent of Invention From March 2, 1617, to October
1, 1851 Parts I (A to M) and II (N to W)”, published by Woodcroft (1857). These documents contain a
synopsis of each patent published between 1617 and 1852. The document is divided by categories,
where each patent can be categorized into one or more categories. We digitize the text of these
documents and drop duplicated patents (i.e., patents that are in more than one category). Our
baseline analysis uses only patents published between 1780-1852. This data was obtained through
HathiTrust.

British Patents (1853-1899): For this period, we rely on the digitized collection of British
patents compiled by Coluccia and Dossi (2025). Their data contains the full text of all British
patents published between 1853 and 1899. We treat this period separately from 1617-1852 because
of the major patent reform of 1852, which reduced filing costs by roughly 75% and triggered a
fivefold increase in patenting within a single year. Moreover, while the pre-1852 data consists only
of short synopses, the 1853-1899 dataset provides full patent descriptions. To avoid concerns about
the comparison between full patent descriptions and patent synopses, we present a version of BPR
(1853-1879) summarizing the full patent descriptions so that they have a similar length to patent
synopses. To do this, we used OpenAI’s API with the following prompt:

Summarize the following 19th-century British patent in MAX. 15 words. Focus strictly on the
technical content, state what the invention is, and describe the mechanism or process. Use only
vocabulary found in the patent itself or in common use at the time of application. Omit the
author and date from the summary. Do not start with phrases like ‘This invention describes’.

The 15-word limit mirrors the average length of the synopses between 1617 and 1852, ensuring
comparability across periods. We construct BPR for the 1853-1879 period (right before our analysis
with trade data starts). To address potential concerns about the process of summarizing the patent
descriptions, we also computed our BPR measure for the 1853-1879 period without summarizing
the patent descriptions. The cosine similarities using full descriptions or summaries are very
similar, with a correlation of 0.99, as can be observed in Figure A.12.

U.S. Patents (1836-1910): We collect U.S. patent descriptions from 1836 (the earliest year avail-
able) through 1910 by web-scraping Google Patents, which provides digitized versions of all U.S.
patents. Our scraper builds on the tool developed by Kelly et al. (2021) and extracts the patent
number, title, date, and full description for each patent.

U.S. patent descriptions typically begin with formulaic phrases such as “To all whom it may
concern, be it known that (. . . )”. We identify the most common introductory phrases and remove
them so that descriptions begin directly with the technical content. Google Patents digitization
relies on Optical Character Recognition (OCR), which can introduce transcription errors. To
mitigate this problem, we retain only words appearing in the Oxford English Dictionary (which has
over 500,000 entries). Words that are not in the dictionary are treated as OCR errors and discarded.
On average, this cleaning step removes about 3% of words in a typical patent description.
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Figure A.12: BPR (1853-1879) Computed with Full Descriptions and Summaries

J New Japanese Words in the Meĳi Period
We utilize the etymology of Japanese words based on the revised edition of Nihon Kokugo Dai-
jiten [The Unabridged Dictionary of the Japanese Language], published by Shogakukan (2006).
Importantly, it includes the title and year of publication of the Japanese document in which each
word is believed to have been first used. We obtained the digitized data for this dictionary from
Kotobank.¹󰑓 The number of new words by year can be seen on Figure 3.

K Technical Books in the Top World Languages (1800-1910)
K.1 Overview
We report the source libraries for our data on technical books in Table A.9. We tried, where possible,
to scrape national libraries. If we could not find a scrapable national library for a language (such as
Arabic and Russian), we scraped WorldCat, an online catalog of thousands of libraries worldwide
covering dozens of languages. Scraping national library catalogs has an advantage over using
WorldCat as the latter source sometimes overstates the number of books because different libraries
sometimes report book titles differently (e.g., slight variations in titles or author names).

We minimized the number of possible duplicates by removing spacing and punctuation in book
titles and dropping any duplicated book titles published in the same year. In order to minimize
the role played by reprints of the same book, we also dropped any duplicates arising from books

¹󰑓Kotobank: https://kotobank.jp/dictionary/nikkokuseisen/
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(possibly published in different years) with the same book ID. Importantly, the number of books
reported for four of our five top codifying languages, French, English, German, and Japanese (but
not Italian), were from national libraries, so we can be confident that there is minimal double
counting in these book totals.

If we could scrape a national library or WorldCat, we made a judgment call about which
source was better. If we saw that for a non-top-4 codifying language, there were more genuine
technical books than we could find in a national library, we opted for the number from WorldCat.
For example, the national libraries of Portugal and Spain have very few technical books in their
catalogs relative to the libraries in WorldCat, so we opted to use WorldCat for these languages.
Because of the duplication issue in WorldCat and the fact that WorldCat allows us to scrape many
libraries for each language, our use of national libraries for English, French, German, and Japanese
likely causes us to understate the concentration of technical books in these languages.

We scraped the number of technical books for 33 languages, which include all of the 20 most
spoken native languages on earth.¹¹ We define the set of books comprising technical knowledge as
those with a subject classified as applied sciences, industry, technology, commerce, and agriculture.
For our purposes, we exclude books on theoretical technical knowledge, such as books in the hard
sciences or in medicine.

¹¹We assume that if someone speaks Yue or Wu Chinese, they can read Mandarin Chinese, given that
these languages all use the same characters.
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Table A.9: Catalogs Scraped

Library Catalog Languages Years Classification Tech Topics
System

Bibliothèque Nationale
de France Link French 1500-1930

Universal
Decimal
Classification

Applied
Sciences and
Technology (6)

Deutsche
Nationalbibliothek Link German 1500-1930

Dewey
Decimal
Classification

Technology (600)

National Diet Library Link Japanese 1500-2023
Nippon
Decimal
Classification

Technology (500)
Industry (600)

Korean National Library Link Korean 1500-2023
Dewey
Decimal
Classes

Technology and
Engineering
(600)

Library of Congress Link English 1500-1930 Keyword
Search

Hand-
constructed

National Library of India Link

Bengali
Hindi
Marathi
Tamil
Urdu

1500-1980 Only has
three options

Non-Fiction
Manually
picked
tech books.

Shanghai Library Link not
accessible Chinese 1500-2023

Chinese
Library
Classification
System

Agriculture (S)
Industry (T)
Transportation (U)

National Central Library (Taiwan) Link Chinese 1500-2023 Keyword
Search Hand-constructed

WorldCat Link

Arabic
Bulgarian
Croatian
Czech
Danish
Dutch
Greek
Hebrew
Indonesian
Italian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Spanish
Swedish
Thai
Turkish
Ukranian
Vietnamese

1800-1930

Subject
filter in
advanced
search

Hand-
constructed
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K.2 Search Filters
1. Format: We only search for books. No images, periodicals, articles, or news-

papers.

2. Language: We always specify the language of the text. For example, when
searching the National Diet Library, we only look for books written in
Japanese.

3. Publication Year: 1500-1930

4. Subject: We always search by subject.

- We search by subject code, if possible. Otherwise, we manually picked
technical books.

- If subject codes are not available, we use subject keywords. To do this,
we first find the underlying subject classification system used by the
library (e.g., Dewey Decimal Classification) to get the descriptions of the
subject codes we want.
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